
(IJCSIS) International Journal of Computer Science and Information Security,
Vol. 7, No. 1, 2010

 AN INNOVATIVE PLATFORM TO IMPROVE THE PERFORMANCE OF EXACT-STRING-
MATCHING ALGORITHMS

Mosleh M. Abu-Alhaj1, M. Halaiyqah2, Muhannad A. Abu-Hashem2, Adnan A. Hnaif1, O. Abouabdalla1, and Ahmed
M. Manasrah.

1: National Advanced IPv6 Center of Excellence, 2: Computer Science
University Sains Malaysia, Penang Malaysia

ABSTRACT
 Exact-String-Matching is an essential issue in
many computer science applications. Unfortunately,
the performance of Exact-String-Matching
algorithms, namely, executing time, does not address
the needs of these applications. This paper proposes a
general platform for improving the existing Exact-
String-Matching algorithms executing time, called
the PXSMAlg platform. The function of this platform
is to parallelize the Exact-String-Matching algorithms
using the MPI model over the Master/Slaves
paradigms. The PXSMAlg platform parallelization
process is done by dividing the Text into several parts
and working on these parts simultaneously. This
improves the executing time of the Exact-String-
Matching algorithms. We have simulated the
PXSMAlg platform in order to show its competence,
through applying the Quick Search algorithm on the
PXSMAlg platform. The simulation result showed
significant improvement in the Quick Search
executing time, and therefore extreme competence in
the PXSMAlg platform.

Keywords- String matching, Parallel, Quick search

I. INTRODUCTION
 Computer science applications play a
significant role in many fields, such as DNA analysis,
artificial intelligence, and information retrieval,
among various others. String matching is an
important issue in many of these applications. It is
the process of finding the occurrence of a Pattern P
into a Text T, wherein T is longer than P. This
occurrence is either exactly matched or partially
matched with the Pattern. Accordingly, string
matching algorithms are divided into two main
categories: Exact-String-Matching algorithms and
approximate string matching algorithms. Exact-
string-matching algorithms are concerned with the
number of occurrences of the pattern into a given
text, while approximate string matching algorithms
are concerned with the similarity percentage between
the pattern and the text or any part of the text [1] [2].
This paper concentrates on Exact-String-Matching
algorithms, such as the Boyer-Moore, Horspool, and
Quick Search algorithms [3].

 Currently, the world is witnessing a
revolution in hardware efficiency, where a normal
laptop can have a multi-core processor. To take
advantage of this revolution, most of the applications
are used in parallel computing, wherein a problem is
divided into smaller problems, which are then
processed simultaneously. Moreover, many parallel
paradigms and models have been developed and
proposed. The Master/Slave paradigm is a widely
used paradigm in parallel computing. It is a Multi-
Processors paradigm containing several nodes, one
node is the master and the other nodes are the slaves.
The master node is responsible for maintaining global
data structures and partitioning the overall
computational problem into smaller sub–problems,
which are handed to the slaves to process for
computation. On the other hand, the Message Passing
Interface (MPI) is one of the well-known parallel
models used in parallel computing above the
hardware and memory architectures. In this paper, we
will use the MPI model along with the Master/Slave
paradigm to develop a general parallel platform and
improve the Exact-String-Matching algorithms’
performance [4] [5] [6].

I.1. Quick search algorithm
 Sunday [7] proposed and designed a new
algorithm for string matching, which is faster than the
Boyer-moor algorithm and is considered one of the
fastest algorithms in the string matching field. Its
time and space complexity are O(m + n) and O (n),
respectively. In terms of detecting matches between
two strings, the quick search algorithm looks similar
to the Boyer-moor algorithm. However, the
difference between them is that the quick search
algorithm only uses the bad-character shift table
while the Boyer-Moore uses both bad-character shift
and good suffix shift tables. Moreover, this algorithm
starts searching from the left-most character to the
right [7].
 The rest of this paper is arranged as follows.
Section 2 discusses some of the related works.
Section 3 discusses the proposed platform, highlights
the border problem, and shows the proposed platform
performance. Finally, the conclusion is stated in
Section 4.

280 http://sites.google.com/site/ijcsis/
ISSN 1947-5500

Cop
y R

igh
ts

(IJCSIS) International Journal of Computer Science and Information Security,
Vol. 7, No. 1, 2010

II. RELATED WORKS
 There have been several research works on
parallel Extract-String-Matching algorithms. For
example, Raju and Babu [8] proposed a parallel
technique for string matching algorithm. They
considered the linear array with a reconfigurable
pipelined bus system (LARPBS) and 2D LARPBS
for string matching in their work, which has many
existing applications such as cellular automata,
computational biology, and string database. The
proposed method introduced increases the speedup of
the string matching process using LARPBS. They
obtained time complexity O (1) for the string
matching on 2D LARPBS where no preprocessing is
done to the text and the pattern [8].
 Park and George [9] presented a dataflow
schemes string matching algorithms parallelization.
In their work, they covered exact matching and k-
mismatched problems, which they consider as sub-
problems in the string matching field. The time
complexity of the proposed parallel algorithm was
O((n/d)+α), 0 ≤ α ≤ m, where n and m are the length
of the text and pattern with (n >> m) and d is the
number of streams used. The parallelism degree can
be controlled by changing the value of the variable d,
which is present in the input streams. Due to the one-
pass dataflow algorithms, there was no preprocessing
and memory space used for this schema [9].

III. PARALLEL-EXACT-STRINGS-
MATCHING-ALGORITHM

 Exact-String-Matching is one of the main
problems in many computer applications. One of the
Exact-String-Matching problems is the slow
matching process between the Pattern and the Text.
Parallel computing is a key technique used to reduce
the time of the Exact-String-Matching process. In this
paper, we have exploited one of the Parallel
computing models, namely, the MPI model, in order
to provide a general platform to parallelize the Exact-
String-Matching algorithms. The proposed platform,
called Parallel-Exact-Strings-Matching algorithm
(PXSMAlg), can be applied in all the Exact-String-
Matching algorithms, such as Quick Search. The
PXSMAlg platform has been developed to run the
Master/Slave paradigm. [3] [5] [6].

III.1. The PXSMAlg Platform
Process

 The parallelization process of the PXSMAlg
platform is accomplished through a set of steps. First,
the Master node reads the Pattern and the Text
(Source-File). Second, the Master node calculates the
Source-File size and divides it into multiple parts,

according to the determined nodes number. Then, the
Master node distributes each part to a specific node.
After that, the searching function starts in each node
to find the Pattern, with each node searching in its
source file part. Before the final step is done, each
node checks the border of its neighbor, except for the
last node. The border issue will discussed later.
Finally, the number of matches is collected from all
nodes. Meanwhile, the Master node calculates all the
collected results and then prints the total result.
Figure 1 illustrates the PXSMAlg platform.

Figure 1: The PXSMAlg platform process

281 http://sites.google.com/site/ijcsis/
ISSN 1947-5500

Cop
y R

igh
ts

(IJCSIS) International Journal of Computer Science and Information Security,
Vol. 7, No. 1, 2010

III.2. Handling the Nodes Borders
Issue

 Border issue is key element that the PXSMAlg
platform faces. This issue happened when the Pattern
located between the Source-File parts borders led to a
mismatched (i.e., not found) Pattern. To resolve this
issue, the PXSMAlg platform allows node "n" to
check the border between node "n" and node "n+1,"
node "n+1" to check the border between node "n+1"
and node "n+2," and so on. For illustrative purposes,
suppose the Source-File is "EXACT STRINGS
MATCHING,” the Pattern is "INGS," and the
number of nodes is two. First, divide the Source-File
into two parts according to the number of nodes,
Part1 is "EXACT STRIN" and Part2 is "GS
MATCHING." As we can notice, if node1 searched
for the Pattern "INGS" in the border of the two parts,
it will find it; otherwise, node1 will not be able to
find the Pattern "INGS" in Part1 and node2 will not
be able to find the Pattern "INGS" in Part2.

III.3. PXSMAlg Platform
Performance Analysis

 We have built a simulation to demonstrate the
feasibility of the PXSMAlg platform and its
compatibility with the Exact-String-Matching
algorithms. In addition, this simulation is done to
compare the performance of the PXSMAlg platform
with the conventional method, that is, the sequential
method. The simulation built is based on three main
factors: executing time, speedup, and efficiency. Our
simulation runs under the Aurora server, which
consists of 14 nodes, with each node having 2 CPUs,
a speed of 1300MHz and a 1GB memory; all nodes
run the Linux OS. The results showed high
performance of the PXSMAlg platform over the
sequential methods.
 We have carried out 14 different experiments to
search for the letter “a” in a 37 MB file size. We have
applied the experiments using the Quick Search
algorithm, which is one of the best algorithms in the
Exact-Strings-Matching algorithms. The result
showed significant improvement in the executing
time and speedup, wherein applying the Exact-String-
Matching algorithms on the PXSMAlg platform
decreased the executing time, especially when
compared with the sequential executing time. Figure
2 depicts the improvement in the Quick Search
algorithm process time in the sequential mode, one
node, parallel mode, and two or more nodes. In
addition, the speedup is increased by applying the
Exact-String-Matching algorithms on the PXSMAlg
platform. Figure 3 shows the improvement in
speedup in the Quick Search algorithm. In contrast to
the executing time and the speedup, the processors’

efficiency decreases by applying Exact-String-
Matching algorithms on the PXSMAlg platform.
Figure 4 shows the decreasing efficiency in the Quick
Search algorithm when the number of the processors
increases.

IV. CONCLUSION
In this paper, we have proposed a general platform,
called the PXSMAlg platform, in order to improve
the Exact-Strings-Matching algorithms performance.
The PXSMAlg platform relies on using the MPI
model over the Master/Slave Paradigm to improve
the Exact-Strings-Matching algorithms’ competence
in terms of speeding up the executing time. We have
applied one of the best Exact-String-Matching
algorithms, the Quick Search algorithm, on the
PXSMAlg platform. The result showed high
efficiency in the PXSMAlg platform. In comparison
with the sequential mode, the Quick Search executing
time and speedup were highly improved. On the other
hand, the efficiency of the processors decreased.

Figure 2: Executing Time

Figure 3: Speedup

282 http://sites.google.com/site/ijcsis/
ISSN 1947-5500

Cop
y R

igh
ts

(IJCSIS) International Journal of Computer Science and Information Security,
Vol. 7, No. 1, 2010

Figure 4: Efficiency

REFERENCES
[1] BERMAN, K. A. & PAUL, J. L., Algorithms:

Sequential, Parallel and Distributed, Thomson,
United State of America., 2005.

[2] S.Viswanadha Raju and A.Vinaya Babu,
”Optimal Parallel algorithm for String Matching
on Mesh Network Structure”, International
Journal applied mathematica Sciences, Vol. 3
No.2, 167-175, 2006.

[3] ALTSCHUL, S. F., MADDEN, T. L.,
SCHAFFER, A. A., ZHANG, J., ZHANG, Z.,
MILLER, W. & LIPMAN, D. J., "Gapped
PLAST and PSI-BLAST : A New Generation of
Protein Database Search Programs. Nucleic
Acids Research", Vol. 25, No. 17, pp 3389-3402,
1997.

[4] http://web.it.kth.se/~matsbror/multicore/, Feb
2009.

[5] C.H. Hsu, T.L. Chen, and G.H. Lin, “Grid
Enabled Master Slave Task Scheduling for
Heterogeneous Processor Paradigm,” Proc.
Fourth Int’l Conf. Grid and Cooperative
Computing (GCC ’05), pp. 449-454, 2005.

[6] Blaise Barne and, Lawrence Livermore,
"https://computing.llnl.gov/tutorials/parallel_co
mp/", Jan 2009.

[7] D.M. Sunday, "A very fast substring search
algorithm", Comm. ACM, No. 33, pp 132–142,
pp 1990.

[8] S. Viswanadha Raju, & A. Vinaya Babu,
"Parallel algorithms for string matching problem
on single and two dimensional reconfigurable
pipelined bus systems", Journal of Computer
Science Vol. 3, No.9, pp.754-759, September
2007.

[9] PARK, J. H., AND GEORGE, K. M., "Parallel
string matching algorithms based on Dataflow",

In Proceedings of the 32rd Hawaii International
Conference on System Sciences, 1999.

283 http://sites.google.com/site/ijcsis/
ISSN 1947-5500

Cop
y R

igh
ts

